3.23.86 \(\int \sqrt {1-2 x} (2+3 x)^4 (3+5 x)^{5/2} \, dx\) [2286]

3.23.86.1 Optimal result
3.23.86.2 Mathematica [A] (verified)
3.23.86.3 Rubi [A] (verified)
3.23.86.4 Maple [A] (verified)
3.23.86.5 Fricas [A] (verification not implemented)
3.23.86.6 Sympy [F]
3.23.86.7 Maxima [A] (verification not implemented)
3.23.86.8 Giac [B] (verification not implemented)
3.23.86.9 Mupad [F(-1)]

3.23.86.1 Optimal result

Integrand size = 26, antiderivative size = 201 \[ \int \sqrt {1-2 x} (2+3 x)^4 (3+5 x)^{5/2} \, dx=\frac {180773237579 \sqrt {1-2 x} \sqrt {3+5 x}}{1310720000}-\frac {16433930689 (1-2 x)^{3/2} \sqrt {3+5 x}}{131072000}-\frac {1493993699 (1-2 x)^{3/2} (3+5 x)^{3/2}}{49152000}-\frac {135817609 (1-2 x)^{3/2} (3+5 x)^{5/2}}{20480000}-\frac {1419 (1-2 x)^{3/2} (2+3 x)^2 (3+5 x)^{7/2}}{11200}-\frac {3}{80} (1-2 x)^{3/2} (2+3 x)^3 (3+5 x)^{7/2}-\frac {3 (1-2 x)^{3/2} (3+5 x)^{7/2} (899099+522420 x)}{1280000}+\frac {1988505613369 \arcsin \left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )}{1310720000 \sqrt {10}} \]

output
-1493993699/49152000*(1-2*x)^(3/2)*(3+5*x)^(3/2)-135817609/20480000*(1-2*x 
)^(3/2)*(3+5*x)^(5/2)-1419/11200*(1-2*x)^(3/2)*(2+3*x)^2*(3+5*x)^(7/2)-3/8 
0*(1-2*x)^(3/2)*(2+3*x)^3*(3+5*x)^(7/2)-3/1280000*(1-2*x)^(3/2)*(3+5*x)^(7 
/2)*(899099+522420*x)+1988505613369/13107200000*arcsin(1/11*22^(1/2)*(3+5* 
x)^(1/2))*10^(1/2)-16433930689/131072000*(1-2*x)^(3/2)*(3+5*x)^(1/2)+18077 
3237579/1310720000*(1-2*x)^(1/2)*(3+5*x)^(1/2)
 
3.23.86.2 Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.49 \[ \int \sqrt {1-2 x} (2+3 x)^4 (3+5 x)^{5/2} \, dx=\frac {10 \sqrt {1-2 x} \left (-17919913416273-41841631696875 x+690018024740 x^2+131786487855200 x^3+337325400912000 x^4+464971057920000 x^5+381250022400000 x^6+175094784000000 x^7+34836480000000 x^8\right )-41758617880749 \sqrt {30+50 x} \arctan \left (\frac {\sqrt {\frac {5}{2}-5 x}}{\sqrt {3+5 x}}\right )}{275251200000 \sqrt {3+5 x}} \]

input
Integrate[Sqrt[1 - 2*x]*(2 + 3*x)^4*(3 + 5*x)^(5/2),x]
 
output
(10*Sqrt[1 - 2*x]*(-17919913416273 - 41841631696875*x + 690018024740*x^2 + 
 131786487855200*x^3 + 337325400912000*x^4 + 464971057920000*x^5 + 3812500 
22400000*x^6 + 175094784000000*x^7 + 34836480000000*x^8) - 41758617880749* 
Sqrt[30 + 50*x]*ArcTan[Sqrt[5/2 - 5*x]/Sqrt[3 + 5*x]])/(275251200000*Sqrt[ 
3 + 5*x])
 
3.23.86.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.15, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.423, Rules used = {111, 27, 170, 27, 164, 60, 60, 60, 60, 64, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {1-2 x} (3 x+2)^4 (5 x+3)^{5/2} \, dx\)

\(\Big \downarrow \) 111

\(\displaystyle -\frac {1}{80} \int -\frac {1}{2} \sqrt {1-2 x} (3 x+2)^2 (5 x+3)^{5/2} (1419 x+904)dx-\frac {3}{80} (1-2 x)^{3/2} (3 x+2)^3 (5 x+3)^{7/2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{160} \int \sqrt {1-2 x} (3 x+2)^2 (5 x+3)^{5/2} (1419 x+904)dx-\frac {3}{80} (1-2 x)^{3/2} (3 x+2)^3 (5 x+3)^{7/2}\)

\(\Big \downarrow \) 170

\(\displaystyle \frac {1}{160} \left (-\frac {1}{70} \int -\frac {7}{2} \sqrt {1-2 x} (3 x+2) (5 x+3)^{5/2} (78363 x+50350)dx-\frac {1419}{70} (1-2 x)^{3/2} (3 x+2)^2 (5 x+3)^{7/2}\right )-\frac {3}{80} (1-2 x)^{3/2} (3 x+2)^3 (5 x+3)^{7/2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{160} \left (\frac {1}{20} \int \sqrt {1-2 x} (3 x+2) (5 x+3)^{5/2} (78363 x+50350)dx-\frac {1419}{70} (1-2 x)^{3/2} (3 x+2)^2 (5 x+3)^{7/2}\right )-\frac {3}{80} (1-2 x)^{3/2} (3 x+2)^3 (5 x+3)^{7/2}\)

\(\Big \downarrow \) 164

\(\displaystyle \frac {1}{160} \left (\frac {1}{20} \left (\frac {135817609}{800} \int \sqrt {1-2 x} (5 x+3)^{5/2}dx-\frac {3}{400} (1-2 x)^{3/2} (5 x+3)^{7/2} (522420 x+899099)\right )-\frac {1419}{70} (1-2 x)^{3/2} (3 x+2)^2 (5 x+3)^{7/2}\right )-\frac {3}{80} (1-2 x)^{3/2} (3 x+2)^3 (5 x+3)^{7/2}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{160} \left (\frac {1}{20} \left (\frac {135817609}{800} \left (\frac {55}{16} \int \sqrt {1-2 x} (5 x+3)^{3/2}dx-\frac {1}{8} (1-2 x)^{3/2} (5 x+3)^{5/2}\right )-\frac {3}{400} (1-2 x)^{3/2} (5 x+3)^{7/2} (522420 x+899099)\right )-\frac {1419}{70} (1-2 x)^{3/2} (3 x+2)^2 (5 x+3)^{7/2}\right )-\frac {3}{80} (1-2 x)^{3/2} (3 x+2)^3 (5 x+3)^{7/2}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{160} \left (\frac {1}{20} \left (\frac {135817609}{800} \left (\frac {55}{16} \left (\frac {11}{4} \int \sqrt {1-2 x} \sqrt {5 x+3}dx-\frac {1}{6} (1-2 x)^{3/2} (5 x+3)^{3/2}\right )-\frac {1}{8} (1-2 x)^{3/2} (5 x+3)^{5/2}\right )-\frac {3}{400} (1-2 x)^{3/2} (5 x+3)^{7/2} (522420 x+899099)\right )-\frac {1419}{70} (1-2 x)^{3/2} (3 x+2)^2 (5 x+3)^{7/2}\right )-\frac {3}{80} (1-2 x)^{3/2} (3 x+2)^3 (5 x+3)^{7/2}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{160} \left (\frac {1}{20} \left (\frac {135817609}{800} \left (\frac {55}{16} \left (\frac {11}{4} \left (\frac {11}{8} \int \frac {\sqrt {1-2 x}}{\sqrt {5 x+3}}dx-\frac {1}{4} (1-2 x)^{3/2} \sqrt {5 x+3}\right )-\frac {1}{6} (1-2 x)^{3/2} (5 x+3)^{3/2}\right )-\frac {1}{8} (1-2 x)^{3/2} (5 x+3)^{5/2}\right )-\frac {3}{400} (1-2 x)^{3/2} (5 x+3)^{7/2} (522420 x+899099)\right )-\frac {1419}{70} (1-2 x)^{3/2} (3 x+2)^2 (5 x+3)^{7/2}\right )-\frac {3}{80} (1-2 x)^{3/2} (3 x+2)^3 (5 x+3)^{7/2}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{160} \left (\frac {1}{20} \left (\frac {135817609}{800} \left (\frac {55}{16} \left (\frac {11}{4} \left (\frac {11}{8} \left (\frac {11}{10} \int \frac {1}{\sqrt {1-2 x} \sqrt {5 x+3}}dx+\frac {1}{5} \sqrt {1-2 x} \sqrt {5 x+3}\right )-\frac {1}{4} (1-2 x)^{3/2} \sqrt {5 x+3}\right )-\frac {1}{6} (1-2 x)^{3/2} (5 x+3)^{3/2}\right )-\frac {1}{8} (1-2 x)^{3/2} (5 x+3)^{5/2}\right )-\frac {3}{400} (1-2 x)^{3/2} (5 x+3)^{7/2} (522420 x+899099)\right )-\frac {1419}{70} (1-2 x)^{3/2} (3 x+2)^2 (5 x+3)^{7/2}\right )-\frac {3}{80} (1-2 x)^{3/2} (3 x+2)^3 (5 x+3)^{7/2}\)

\(\Big \downarrow \) 64

\(\displaystyle \frac {1}{160} \left (\frac {1}{20} \left (\frac {135817609}{800} \left (\frac {55}{16} \left (\frac {11}{4} \left (\frac {11}{8} \left (\frac {11}{25} \int \frac {1}{\sqrt {\frac {11}{5}-\frac {2}{5} (5 x+3)}}d\sqrt {5 x+3}+\frac {1}{5} \sqrt {1-2 x} \sqrt {5 x+3}\right )-\frac {1}{4} (1-2 x)^{3/2} \sqrt {5 x+3}\right )-\frac {1}{6} (1-2 x)^{3/2} (5 x+3)^{3/2}\right )-\frac {1}{8} (1-2 x)^{3/2} (5 x+3)^{5/2}\right )-\frac {3}{400} (1-2 x)^{3/2} (5 x+3)^{7/2} (522420 x+899099)\right )-\frac {1419}{70} (1-2 x)^{3/2} (3 x+2)^2 (5 x+3)^{7/2}\right )-\frac {3}{80} (1-2 x)^{3/2} (3 x+2)^3 (5 x+3)^{7/2}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {1}{160} \left (\frac {1}{20} \left (\frac {135817609}{800} \left (\frac {55}{16} \left (\frac {11}{4} \left (\frac {11}{8} \left (\frac {11 \arcsin \left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )}{5 \sqrt {10}}+\frac {1}{5} \sqrt {1-2 x} \sqrt {5 x+3}\right )-\frac {1}{4} (1-2 x)^{3/2} \sqrt {5 x+3}\right )-\frac {1}{6} (1-2 x)^{3/2} (5 x+3)^{3/2}\right )-\frac {1}{8} (1-2 x)^{3/2} (5 x+3)^{5/2}\right )-\frac {3}{400} (1-2 x)^{3/2} (5 x+3)^{7/2} (522420 x+899099)\right )-\frac {1419}{70} (1-2 x)^{3/2} (3 x+2)^2 (5 x+3)^{7/2}\right )-\frac {3}{80} (1-2 x)^{3/2} (3 x+2)^3 (5 x+3)^{7/2}\)

input
Int[Sqrt[1 - 2*x]*(2 + 3*x)^4*(3 + 5*x)^(5/2),x]
 
output
(-3*(1 - 2*x)^(3/2)*(2 + 3*x)^3*(3 + 5*x)^(7/2))/80 + ((-1419*(1 - 2*x)^(3 
/2)*(2 + 3*x)^2*(3 + 5*x)^(7/2))/70 + ((-3*(1 - 2*x)^(3/2)*(3 + 5*x)^(7/2) 
*(899099 + 522420*x))/400 + (135817609*(-1/8*((1 - 2*x)^(3/2)*(3 + 5*x)^(5 
/2)) + (55*(-1/6*((1 - 2*x)^(3/2)*(3 + 5*x)^(3/2)) + (11*(-1/4*((1 - 2*x)^ 
(3/2)*Sqrt[3 + 5*x]) + (11*((Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/5 + (11*ArcSin[S 
qrt[2/11]*Sqrt[3 + 5*x]])/(5*Sqrt[10])))/8))/4))/16))/800)/20)/160
 

3.23.86.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 64
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp 
[2/b   Subst[Int[1/Sqrt[c - a*(d/b) + d*(x^2/b)], x], x, Sqrt[a + b*x]], x] 
 /; FreeQ[{a, b, c, d}, x] && GtQ[c - a*(d/b), 0] && ( !GtQ[a - c*(b/d), 0] 
 || PosQ[b])
 

rule 111
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/(d*f*(m + n + p + 1))), x] + Simp[1/(d*f*(m + n + p + 1))   Int[(a + b*x) 
^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m 
 - 1) + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m 
 + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] & 
& GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]
 

rule 164
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_ 
))*((g_.) + (h_.)*(x_)), x_] :> Simp[(-(a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - 
 b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x))*(a + b*x)^(m + 1)*(( 
c + d*x)^(n + 1)/(b^2*d^2*(m + n + 2)*(m + n + 3))), x] + Simp[(a^2*d^2*f*h 
*(n + 1)*(n + 2) + a*b*d*(n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 
3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*(m + n + 3) + 
d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3))   Int[( 
a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] 
&& NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]
 

rule 170
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*(( 
e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Simp[1/(d*f*(m + n + p + 2)) 
  Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2 
) - h*(b*c*e*m + a*(d*e*(n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) 
+ h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] 
 && IntegerQ[m]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 
3.23.86.4 Maple [A] (verified)

Time = 1.11 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.61

method result size
risch \(-\frac {\left (6967296000000 x^{7}+30838579200000 x^{6}+57746856960000 x^{5}+58346097408000 x^{4}+32457421737600 x^{3}+6882844528480 x^{2}-3991703112140 x -5973304472091\right ) \left (-1+2 x \right ) \sqrt {3+5 x}\, \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{27525120000 \sqrt {-\left (-1+2 x \right ) \left (3+5 x \right )}\, \sqrt {1-2 x}}+\frac {1988505613369 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{26214400000 \sqrt {1-2 x}\, \sqrt {3+5 x}}\) \(123\)
default \(\frac {\sqrt {3+5 x}\, \sqrt {1-2 x}\, \left (139345920000000 \sqrt {-10 x^{2}-x +3}\, x^{7}+616771584000000 \sqrt {-10 x^{2}-x +3}\, x^{6}+1154937139200000 x^{5} \sqrt {-10 x^{2}-x +3}+1166921948160000 x^{4} \sqrt {-10 x^{2}-x +3}+649148434752000 x^{3} \sqrt {-10 x^{2}-x +3}+137656890569600 x^{2} \sqrt {-10 x^{2}-x +3}+41758617880749 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right )-79834062242800 x \sqrt {-10 x^{2}-x +3}-119466089441820 \sqrt {-10 x^{2}-x +3}\right )}{550502400000 \sqrt {-10 x^{2}-x +3}}\) \(172\)

input
int((2+3*x)^4*(3+5*x)^(5/2)*(1-2*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/27525120000*(6967296000000*x^7+30838579200000*x^6+57746856960000*x^5+58 
346097408000*x^4+32457421737600*x^3+6882844528480*x^2-3991703112140*x-5973 
304472091)*(-1+2*x)*(3+5*x)^(1/2)/(-(-1+2*x)*(3+5*x))^(1/2)*((1-2*x)*(3+5* 
x))^(1/2)/(1-2*x)^(1/2)+1988505613369/26214400000*10^(1/2)*arcsin(20/11*x+ 
1/11)*((1-2*x)*(3+5*x))^(1/2)/(1-2*x)^(1/2)/(3+5*x)^(1/2)
 
3.23.86.5 Fricas [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.46 \[ \int \sqrt {1-2 x} (2+3 x)^4 (3+5 x)^{5/2} \, dx=\frac {1}{27525120000} \, {\left (6967296000000 \, x^{7} + 30838579200000 \, x^{6} + 57746856960000 \, x^{5} + 58346097408000 \, x^{4} + 32457421737600 \, x^{3} + 6882844528480 \, x^{2} - 3991703112140 \, x - 5973304472091\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1} - \frac {1988505613369}{26214400000} \, \sqrt {10} \arctan \left (\frac {\sqrt {10} {\left (20 \, x + 1\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{20 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) \]

input
integrate((2+3*x)^4*(3+5*x)^(5/2)*(1-2*x)^(1/2),x, algorithm="fricas")
 
output
1/27525120000*(6967296000000*x^7 + 30838579200000*x^6 + 57746856960000*x^5 
 + 58346097408000*x^4 + 32457421737600*x^3 + 6882844528480*x^2 - 399170311 
2140*x - 5973304472091)*sqrt(5*x + 3)*sqrt(-2*x + 1) - 1988505613369/26214 
400000*sqrt(10)*arctan(1/20*sqrt(10)*(20*x + 1)*sqrt(5*x + 3)*sqrt(-2*x + 
1)/(10*x^2 + x - 3))
 
3.23.86.6 Sympy [F]

\[ \int \sqrt {1-2 x} (2+3 x)^4 (3+5 x)^{5/2} \, dx=\int \sqrt {1 - 2 x} \left (3 x + 2\right )^{4} \left (5 x + 3\right )^{\frac {5}{2}}\, dx \]

input
integrate((2+3*x)**4*(3+5*x)**(5/2)*(1-2*x)**(1/2),x)
 
output
Integral(sqrt(1 - 2*x)*(3*x + 2)**4*(5*x + 3)**(5/2), x)
 
3.23.86.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.69 \[ \int \sqrt {1-2 x} (2+3 x)^4 (3+5 x)^{5/2} \, dx=-\frac {405}{16} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} x^{5} - \frac {49059}{448} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} x^{4} - \frac {739881}{3584} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} x^{3} - \frac {80346831}{358400} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} x^{2} - \frac {4513921183}{28672000} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} x - \frac {26326737569}{344064000} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} + \frac {16433930689}{65536000} \, \sqrt {-10 \, x^{2} - x + 3} x - \frac {1988505613369}{26214400000} \, \sqrt {10} \arcsin \left (-\frac {20}{11} \, x - \frac {1}{11}\right ) + \frac {16433930689}{1310720000} \, \sqrt {-10 \, x^{2} - x + 3} \]

input
integrate((2+3*x)^4*(3+5*x)^(5/2)*(1-2*x)^(1/2),x, algorithm="maxima")
 
output
-405/16*(-10*x^2 - x + 3)^(3/2)*x^5 - 49059/448*(-10*x^2 - x + 3)^(3/2)*x^ 
4 - 739881/3584*(-10*x^2 - x + 3)^(3/2)*x^3 - 80346831/358400*(-10*x^2 - x 
 + 3)^(3/2)*x^2 - 4513921183/28672000*(-10*x^2 - x + 3)^(3/2)*x - 26326737 
569/344064000*(-10*x^2 - x + 3)^(3/2) + 16433930689/65536000*sqrt(-10*x^2 
- x + 3)*x - 1988505613369/26214400000*sqrt(10)*arcsin(-20/11*x - 1/11) + 
16433930689/1310720000*sqrt(-10*x^2 - x + 3)
 
3.23.86.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 545 vs. \(2 (150) = 300\).

Time = 0.43 (sec) , antiderivative size = 545, normalized size of antiderivative = 2.71 \[ \int \sqrt {1-2 x} (2+3 x)^4 (3+5 x)^{5/2} \, dx=\frac {27}{458752000000} \, \sqrt {5} {\left (2 \, {\left (4 \, {\left (8 \, {\left (4 \, {\left (16 \, {\left (4 \, {\left (24 \, {\left (140 \, x - 599\right )} {\left (5 \, x + 3\right )} + 175163\right )} {\left (5 \, x + 3\right )} - 4295993\right )} {\left (5 \, x + 3\right )} + 265620213\right )} {\left (5 \, x + 3\right )} - 2676516549\right )} {\left (5 \, x + 3\right )} + 35390483373\right )} {\left (5 \, x + 3\right )} - 164483997363\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} - 309625826895 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {603}{71680000000} \, \sqrt {5} {\left (2 \, {\left (4 \, {\left (8 \, {\left (4 \, {\left (16 \, {\left (20 \, {\left (120 \, x - 443\right )} {\left (5 \, x + 3\right )} + 94933\right )} {\left (5 \, x + 3\right )} - 7838433\right )} {\left (5 \, x + 3\right )} + 98794353\right )} {\left (5 \, x + 3\right )} - 1568443065\right )} {\left (5 \, x + 3\right )} + 8438816295\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} + 17534989395 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {5769}{2560000000} \, \sqrt {5} {\left (2 \, {\left (4 \, {\left (8 \, {\left (4 \, {\left (16 \, {\left (100 \, x - 311\right )} {\left (5 \, x + 3\right )} + 46071\right )} {\left (5 \, x + 3\right )} - 775911\right )} {\left (5 \, x + 3\right )} + 15385695\right )} {\left (5 \, x + 3\right )} - 99422145\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} - 220189365 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {30649}{320000000} \, \sqrt {5} {\left (2 \, {\left (4 \, {\left (8 \, {\left (12 \, {\left (80 \, x - 203\right )} {\left (5 \, x + 3\right )} + 19073\right )} {\left (5 \, x + 3\right )} - 506185\right )} {\left (5 \, x + 3\right )} + 4031895\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} + 10392195 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {1831}{300000} \, \sqrt {5} {\left (2 \, {\left (4 \, {\left (8 \, {\left (60 \, x - 119\right )} {\left (5 \, x + 3\right )} + 6163\right )} {\left (5 \, x + 3\right )} - 66189\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} - 184305 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {933}{5000} \, \sqrt {5} {\left (2 \, {\left (4 \, {\left (40 \, x - 59\right )} {\left (5 \, x + 3\right )} + 1293\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} + 4785 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {297}{125} \, \sqrt {5} {\left (2 \, {\left (20 \, x - 23\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} - 143 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {216}{25} \, \sqrt {5} {\left (11 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right ) + 2 \, \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5}\right )} \]

input
integrate((2+3*x)^4*(3+5*x)^(5/2)*(1-2*x)^(1/2),x, algorithm="giac")
 
output
27/458752000000*sqrt(5)*(2*(4*(8*(4*(16*(4*(24*(140*x - 599)*(5*x + 3) + 1 
75163)*(5*x + 3) - 4295993)*(5*x + 3) + 265620213)*(5*x + 3) - 2676516549) 
*(5*x + 3) + 35390483373)*(5*x + 3) - 164483997363)*sqrt(5*x + 3)*sqrt(-10 
*x + 5) - 309625826895*sqrt(2)*arcsin(1/11*sqrt(22)*sqrt(5*x + 3))) + 603/ 
71680000000*sqrt(5)*(2*(4*(8*(4*(16*(20*(120*x - 443)*(5*x + 3) + 94933)*( 
5*x + 3) - 7838433)*(5*x + 3) + 98794353)*(5*x + 3) - 1568443065)*(5*x + 3 
) + 8438816295)*sqrt(5*x + 3)*sqrt(-10*x + 5) + 17534989395*sqrt(2)*arcsin 
(1/11*sqrt(22)*sqrt(5*x + 3))) + 5769/2560000000*sqrt(5)*(2*(4*(8*(4*(16*( 
100*x - 311)*(5*x + 3) + 46071)*(5*x + 3) - 775911)*(5*x + 3) + 15385695)* 
(5*x + 3) - 99422145)*sqrt(5*x + 3)*sqrt(-10*x + 5) - 220189365*sqrt(2)*ar 
csin(1/11*sqrt(22)*sqrt(5*x + 3))) + 30649/320000000*sqrt(5)*(2*(4*(8*(12* 
(80*x - 203)*(5*x + 3) + 19073)*(5*x + 3) - 506185)*(5*x + 3) + 4031895)*s 
qrt(5*x + 3)*sqrt(-10*x + 5) + 10392195*sqrt(2)*arcsin(1/11*sqrt(22)*sqrt( 
5*x + 3))) + 1831/300000*sqrt(5)*(2*(4*(8*(60*x - 119)*(5*x + 3) + 6163)*( 
5*x + 3) - 66189)*sqrt(5*x + 3)*sqrt(-10*x + 5) - 184305*sqrt(2)*arcsin(1/ 
11*sqrt(22)*sqrt(5*x + 3))) + 933/5000*sqrt(5)*(2*(4*(40*x - 59)*(5*x + 3) 
 + 1293)*sqrt(5*x + 3)*sqrt(-10*x + 5) + 4785*sqrt(2)*arcsin(1/11*sqrt(22) 
*sqrt(5*x + 3))) + 297/125*sqrt(5)*(2*(20*x - 23)*sqrt(5*x + 3)*sqrt(-10*x 
 + 5) - 143*sqrt(2)*arcsin(1/11*sqrt(22)*sqrt(5*x + 3))) + 216/25*sqrt(5)* 
(11*sqrt(2)*arcsin(1/11*sqrt(22)*sqrt(5*x + 3)) + 2*sqrt(5*x + 3)*sqrt(...
 
3.23.86.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {1-2 x} (2+3 x)^4 (3+5 x)^{5/2} \, dx=\int \sqrt {1-2\,x}\,{\left (3\,x+2\right )}^4\,{\left (5\,x+3\right )}^{5/2} \,d x \]

input
int((1 - 2*x)^(1/2)*(3*x + 2)^4*(5*x + 3)^(5/2),x)
 
output
int((1 - 2*x)^(1/2)*(3*x + 2)^4*(5*x + 3)^(5/2), x)